La luz y la nanotecnología se combinan para prevenir la contaminación bacteriana de los implantes médicos
Foto de las mallas quirúrgicas. Las mallas de color rojizo cobre (izquierda) están recubiertas de nanopartículas de oro. Las mallas blancas de la derecha son las originales antes del tratamiento de nanopartículas
Acerca del ICFO
El ICFO - El Instituto de Ciencias Fotónicas fue fundado en 2002 por la Generalitat de Catalunya y la Universitat Politècnica de Catalunya · BarcelonaTech (UPC), ambos miembros de su consejo de administración junto con Cellex y Mir- Fundaciones Puig, entidades filantrópicas que han desempeñado un papel fundamental en el avance del instituto desde 2007. Ubicado en el Parque Tecnológico del Mediterráneo en el área metropolitana de Barcelona, el instituto actualmente alberga a 400 personas, organizadas en 26 grupos de investigación en 60 laboratorios de investigación de última generación. Las líneas de investigación abarcan diversas áreas en las que la fotónica desempeña un papel decisivo, con énfasis en temas básicos y aplicados relacionados con la medicina y la biología, técnicas avanzadas de imágenes, tecnologías de la información, una gama de sensores ambientales, láser sintonizable y ultra rápido, ciencia cuántica La energía fotovoltaica y las propiedades y aplicaciones de nanomateriales como el grafeno, entre otros. Además de las dos acreditaciones de excelencia Severo Ochoa otorgadas por el estado, los ICFOnians han recibido 15 cátedras ICREA y 34 becas del Consejo Europeo de Investigación. El ICFO participa activamente en la plataforma tecnológica europea Photonics21 y también es muy proactivo en el fomento de actividades empresariales, la creación de spin-off y la creación de colaboraciones y vínculos entre la industria y los investigadores del ICFO. Hasta la fecha, el ICFO ha ayudado a crear 7 empresas de nueva creación.
Un estudio del Instituto de Ciencias Fotónicas (ICFO) - instituto universitario de investigación adscrito a la UPC - y B. Braun Surgical, S.A. publicado en Nano Letters y destacado en Nature Photonics informa sobre una nueva técnica que podría prevenir la contaminación bacteriana en implantes médicos mediante el uso de luz combinada con nanopartículas de oro.
24/05/2019
Sin embargo, el implante de este tipo de productos sanitarios en el cuerpo de un paciente conlleva un riesgo de contaminación bacteriana durante la cirugía que puede derivar en la posterior formación de un biofilm sobre la superficie del implante. Estos biofilms tienden a actuar como un recubrimiento impermeable a los fármacos, impidiendo que los agentes antibióticos alcancen y ataquen las bacterias del biofilm y no se pueda detener la infección. Por lo tanto, las terapias con antibióticos, que son limitadas en el tiempo, podrían fallar contra estas bacterias resistentes y el paciente podría necesitar una segunda intervención para explantar la malla con los consiguientes riesgos y costes que conllevan este tipo de intervenciones.
En el pasado, se han desarrollado varios métodos para prevenir la contaminación de los implantes durante la cirugía y los hospitales han implementado protocolos quirúrgicos de asepsia para combatir este tipo de contaminación bacteriana aunque no se ha conseguido resolver del todo este problema.
En un estudio reciente publicado en Nano Letters y destacado en Nature Photonics, los investigadores del ICFO, centro universitario de investigación adscrito a la Universitat Politècnica de Catalunya · BarcelonaTech (UPC), Ignacio de Miguel y Arantxa Albornoz, dirigidos por el profesor ICREA en el ICFO Romain Quidant, en colaboración con los investigadores Irene Prieto, Vanesa Sanz, Christine Weis y Pau Turon, de la empresa B. Braun Surgical, S.A., fabricante de productos sanitarios, han ideado una técnica novedosa que utiliza la nanotecnología y la fotónica para mejorar drásticamente la prevención de la colonización de los implantes quirúrgicos.
A través de una colaboración que se inició en 2012, el equipo de investigadores del ICFO y B. Braun Surgical, S.A. ha desarrollado una malla quirúrgica una característica particular: la superficie de la malla está modificada químicamente para anclar millones de nanopartículas de oro. ¿Por qué? Pues porque se ha demostrado que las nanopartículas de oro convierten de manera muy eficiente la luz en calor en regiones muy localizadas, de alcance nanométrico, siendo este efecto útil para destruir la membrana celularde las bacterias y deshacer el entramado protector del biofilm constituido por moléculas denominadas proteoglicanos.
La técnica del uso de nanopartículas de oro en procesos de conversión de luz-calor ya se había probado en estudios anteriores en tratamientos contra el cáncer. Concretamente, en el ICFO esta técnica se había implementado en varios estudios previos respaldados por la Fundación Cellex, siendo otro ejemplo sobresaliente de cómo el apoyo filantrópico visionario que pretende abordar problemas fundamentales puede terminar dando lugar a importantes aplicaciones prácticas. En este caso en particular, teniendo en cuenta que más de 20 millones de operaciones de reparación de hernias se realizan cada año en todo el mundo, se creyó que este método podía reducir los costes médicos de las operaciones por recurrencia y al mismo tiempo facilitar la eficacia de los tratamientos con antibióticos que actualmente se emplean para combatir este problema.
Tal y como comenta el profesor ICREA en el ICFO Romain Quidant, “Los resultados de este estudio han allanado el camino hacia el uso de nanotecnología plasmónica para prevenir la formación de biofilms bacterianos en la superficie de los implantes quirúrgicos. Todavía hay varias cuestiones que deben abordarse, pero es importante enfatizar que dicha técnica significará un cambio radical en los procedimientos quirúrgicos y la posterior recuperación del paciente”.
Por lo tanto, en su experimento in vitro y mediante un exhaustivo proceso de desarrollo, el equipo recubrió la malla quirúrgica con millones de nanopartículas de oro, extendiéndolas uniformemente sobre toda la estructura. Las mallas se testaron en diferentes momentos a lo largo del tiempo para garantizar la estabilidad de las partículas a largo plazo, la no degradación del material y la no liberación de nanopartículas al entorno. Observaron una distribución homogénea de las nanopartículas sobre la estructura utilizando un microscopio electrónico de barrido.
Una vez se obtuvo la malla modificada, el equipo la expuso a la bacteria S. aureus durante 24 horas hasta que observó la formación de un biofilm en la superficie. Posteriormente, expusieron la malla a pulsos cortos e intensos de luz infrarroja cercana (800 nm) durante 30 segundos para asegurar que se alcanzara el equilibrio térmico y repitieron el procedimiento 20 veces con un intervalo de 4 segundos de descanso entre cada pulso. Descubrieron lo siguiente: en primer lugar, vieron que iluminar la malla con una frecuencia específica inducía resonancias plasmónicas de superficie localizadas en las nanopartículas, lo cual resulta en la conversión eficiente de luz en calor, quemando así las bacterias sobre la superficie. En segundo lugar, usando un microscopio confocal de fluorescencia, vieron cuántas bacterias habían muerto y cuántas estaban aún vivas. Respecto a las bacterias que habían sobrevivido, observaron que las del biofilm se convirtieron en células planctónicas, recuperando su sensibilidad a la terapia con antibióticos y a la respuesta del sistema inmunológico. En cuanto a las bacterias muertas, observaron que al aumentar la cantidad de luz que llega a la superficie de la malla, las bacterias perdían su adherencia y se desprendían de la superficie. En tercer lugar, confirmaron que operar en rangos de luz infrarroja cercana era perfectamente compatible con condiciones in vivo, por lo que es probable que esta técnica no dañase el tejido sano circundante. Finalmente, repitieron el tratamiento y confirmaron que el calentamiento recurrente de la malla no había afectado a su eficiencia de conversión de luz a calor.
Pau Turon, Director de Investigación y Desarrollo de B. Braun Surgical, S.A. explica “Nuestro compromiso con los profesionales de la salud para ayudarles a evitar infecciones hospitalarias nos empuja a desarrollar nuevas estrategias para combatir las bacterias y los biofilms. Además, el equipo de investigación está explorando las posibilidades de extender dicha tecnología a otros sectores en los cuales los biofilms deberían ser evitados”.