

Course guide 2301201 - MITP - Microelectronic Technologies and Processes

Last modified: 19/03/2024

Unit in charge: Barcelona School of Telecommunications Engineering

Teaching unit: 1022 - UAB - (ANG) pendent.

Degree: MASTER'S DEGREE IN SEMICONDUCTOR ENGINEERING AND MICROELECTRONIC DESIGN (Syllabus 2024).

(Compulsory subject).

Academic year: 2024 ECTS Credits: 6.0 Languages: English

LECTURER

Coordinating lecturer: Consultar aquí / See here:

https://telecos.upc.edu/ca/curs-actual/coordinadors-i-professorat

Others: Consultar aquí / See here:

https://telecos.upc.edu/ca/curs-actual/coordinadors-i-professorat

PRIOR SKILLS

Basic concepts at the level of a bachelor's degree of physics, chemistry, and mathematics, and specifically of solid-state physics and electron devices.

TEACHING METHODOLOGY

Theory classes (large group) where the contents of the subject matter are presented, combined with classes on exercises and problems solving. There is also a practical part consisting of 5 computer laboratory sessions, where simulations of manufacturing processes are carried out, including their integration.

LEARNING OBJECTIVES OF THE SUBJECT

- 1. Acquire knowledge on the individual technological processes that are used in microelectronics.
- 2. Learn the basic parameters that control each one of the individual processes in microelectronics technology.
- 3. Be able to evaluate the result of performing a technological process.
- $4.\ Be$ able to analyse the process sequence that has been used for the fabrication of a microelectronic device.
- 5. Acquire the skills to understand and apply the design rules of the standard fabrication processes (e.g. by commercial foundries) in microelectronics technology.
- 6. Acquire the competence to design a sequence of process steps for the fabrication of a specific microstructure or device.

STUDY LOAD

Туре	Hours	Percentage
Hours large group	38,0	25.33
Hours small group	10,0	6.67
Self study	102,0	68.00

Total learning time: 150 h

Date: 14/06/2024 **Page:** 1 / 3

CONTENTS

Module 1. Introduction to semiconductor manufacturing technologies

Description:

1. Introduction to microelectronics technologies

Concept of planar technology. Evolution of microelectronics technology.

2. Basic concepts on semiconductors and devices

Review of basic concepts of semiconductor physics: energy bands, carrier concentration and doping, carrier transport. Basic structures of semiconductor devices: planar MOSFET, FDSOI, FinFET.

Full-or-part-time: 5h 30m Theory classes: 5h 30m

Module 2. Processes for microelectronics fabrication

Description:

Description of the individual processes that are used for microelectronics fabrication.

3. Cleaning and oxidation

Wafer cleaning. Dry and wet oxidation of silicon.

4. Impurity doping of semiconductors

Thermal pre-deposition. Thermal diffusion. Ion implantation.

- 5. Thin film deposition techniques
- 5.1. Chemical Vapour Deposition: Low-pressure CVD, Plasma-Enhanced CVD, Atomic Layer Deposition.
- 5.2. Physical Vapour Deposition: Evaporation, sputtering.
- 6. Lithography
- 6.1. Optical lithography
- 6.2. Electron beam lithography. Mask making.
- 7. Etching
- 7.1. Wet chemical etching: Isotropic and anisotropic techniques.
- 7.2. Dry etching: Reactive Ion Etching, Deep reactive ion etching.
- 7.3. Chemical Mechanical Polishing

Full-or-part-time: 20h 30m Theory classes: 20h 30m

Module 3. Process integration

Description:

Integration of sequences of process steps (process flows) for the fabrication of specific microstructures or devices. Introduction to the simulation of processes. Introduction to Process Design Kits, which act as a bridge between manufacturing technologies and circuit design.

- 8. Integration examples
- 4.1. Detailed study of the fabrication of a PN diode.
- 4.2. Process modules for CMOS technology.
- 4.3. Integration of processes for Micro Electro Mechanical Systems (MEMS) fabrication.
- 4.4. Technologies for advanced nodes: FinFET.
- 9. Technology-related CAD tools
- 4.5. Introduction to Technology Computer-Aided Design for process simulation.
- 4.6. Introduction to Process Design Kits (PDK).

Full-or-part-time: 12h Theory classes: 12h

Date: 14/06/2024 **Page:** 2 / 3

Simulation laboratory

Description:

Practical sessions of process simulation with Technology Computer-Aided Design (TCAD) software tools. Five sessions of 2 hours.

Full-or-part-time: 10h Laboratory classes: 10h

GRADING SYSTEM

Final written examination (50 %), proposed exercises/problems (30%), reports corresponding to laboratory sessions (20%).

BIBLIOGRAPHY

Basic:

- May, G.S.; Sze, S.M. Fundamentals of semiconductor fabrication. New York: Wiley, 2004. ISBN 0471232793.
- Sze, S.M.; Lee, M.-K. Semiconductor devices, physics and technology. 3a ed. int. stud. ed. Singapore: Wiley, 2013. ISBN 9788126556755.
- Campbell, S.A. Fabrication engineering at the micro- and nanoscale [on line]. 4th ed. Oxford University Press, 2012 [Consultation: 19/03/2024]. Available on:

- Franssila, S. Introduction to microfabrication [on line]. 2a ed. Wiley, 2010 [Consultation: 19/03/2024]. Available on: https://www.wiley.com/en-ae/Introduction+to+Microfabrication,+2nd+Edition-p-9781119991892. ISBN 9780470749838.
- Doering, R.; Nishi, Y. Handbook of semiconductor manufacturing technology. 2a ed. Boca Raton: CRC Press, 2008. ISBN 9781574446753.

Date: 14/06/2024 **Page:** 3 / 3