

Guía docente 295462 - 295TM113 - Fabricación Avanzada

Última modificación: 16/07/2024

Unidad responsable: Escuela de Ingeniería de Barcelona Este

Unidad que imparte: 712 - EM - Departamento de Ingeniería Mecánica.

Titulación: MÁSTER UNIVERSITARIO EN TECNOLOGÍAS MECÁNICAS (Plan 2024). (Asignatura optativa).

Curso: 2024 Créditos ECTS: 6.0 Idiomas: Inglés

PROFESORADO

Profesorado responsable: Jerez Mesa, Ramon

Otros: Jerez Mesa, Ramón (Mechanical Engineering)

Adrover Monserrat, Bàrbara (Mechanical Engineering)

Llumà Fuentes, Jordi (Materials Science) Fatemi, Mahmood (Materials Science) Leon, Noel (Materials Science) Cinca Luis, Nuria (Materials Science)

CAPACIDADES PREVIAS

Tener conocimientos sobre los diferentes grupos de materiales que se pueden utilizar para fabricar piezas, así como sus propiedades y cómo caracterizarlas.

Por favor, absténganse de matricularse estudiantado que no tenga conocimientos previos sobre procesos de fabricación por arranque de viruta, deformación plástica volumétrica y de chapa y por fabricación aditiva.

REQUISITOS

Haber cursado un grado en ingeniería de la rama industrial, ingeniería o licenciatura en físicas

METODOLOGÍAS DOCENTES

La asignatura se desarrollará mediante clases teóricas de exposición de contenidos, clases invertidas per a algunes de les matèries, prácticas de laboratorio y visitas a empresa y centros de investigación.

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

La asignatura tiene como objetivos transmitir a los estudiantes habilidades para:

- 1. Tomar decisiones sobre las técnicas adecuadas para caracterizar las propiedades de los productos obtenidos por diferentes procesos.
- $\hbox{2. Dise} \tilde{\mathsf{n}} \mathsf{ar} \mathsf{\ y} \mathsf{\ fabricar\ piezas\ funcionales\ y\ /\ o\ prototipos\ a\ partir\ de\ t\'ecnicas\ de\ ingenier\'ia\ inversa.}$
- 3. Diseñar el proceso de fabricación y fabricar piezas mediante nuevos métodos no convencionales.
- 4. Utilizar herramientas para determinar los mejores valores para los diferentes parámetros que actúan como variables en un proceso de fabricación
- 5. Analizar la calidad de un proceso basado en las propiedades funcionales de las piezas fabricadas.

Fecha: 21/07/2024 Página: 1 / 4

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas aprendizaje autónomo	102,0	68.00
Horas grupo grande	21,0	14.00
Horas grupo pequeño	21,0	14.00
Horas actividades dirigidas	6,0	4.00

Dedicación total: 150 h

CONTENIDOS

Fabricación aditiva

Descripción:

- Técnicas de fabricación aditiva (AM).
- Materiales utilizados en la- Fabricación aditiva de plásticos, metales y cerámicos.
- Diseño del proceso de fabricación.
- Definición de los diferentes parámetros de fabricación.
- Funcionamiento mecánico, electrónico e informático de máquinas para la fabricación de aditivos.

Objetivos específicos:

- 1. Conocer las diferentes técnicas de AM existentes en el mercado
- 2. Conocer los diferentes materiales que se utilizan para fabricar piezas para AM
- 3. Aprender a diseñar el proceso de fabricación de una pieza a través de diferentes técnicas de AM

Dedicación: 8h Grupo grande/Teoría: 4h Grupo mediano/Prácticas: 4h

Procesos de fabricación sustractiva

Descripción:

- Tecnologías de láser e irradiación: interacciones entre la radiación y la materia. Modificaciones de superficie. Corte de láser y grabado. Tipo de láser.
- Operaciones de superacabado: operaciones utilizadas para los diferentes grupos de materiales, características, parámetros de fabricación
- Materiales avanzados de herramientas. Eficiencia e impacto ecológico de los materiales de la herramienta. Composites CMC-MMC. Recubrimientos. Selección de materiales de herramienta. Respuesta de los materiales a la conformación.

Objetivos específicos:

- 1. Profundizar en el conocimiento de diferentes procesos de fabricación sustractiva no convencionales y sus características
- 2. Aprender a evaluar los parámetros de fabricación de estos procesos
- 3. Conocer materiales avanzados para fabricar herramientas de corte, así como sus características

Dedicación: 10h Grupo grande/Teoría: 6h Grupo mediano/Prácticas: 4h

Fabricación per Deformación plástica

Descripción:

- Procesos de conformado plástico moderado y severo.
- Proceso rotatorio e incremental.
- Conformación severa de plástico

Objetivos específicos:

- 1. Profundizar en el conocimiento de las técnicas de conformado basadas en la deformación plástica de los materiales
- 2. Entender las evoluciones microestructurales de los materiales sometidos a conformados plásticos
- 3. Aplicaciones tecnológicas de conformado plástico

Dedicación: 8h

Grupo grande/Teoría: 4h Grupo mediano/Prácticas: 4h

Técnicas de caracteritzación avanzada de materiales

Descripción:

- Técnicas avanzadas para la caracterización de las propiedades de diferentes grupos de materiales. Microscopias y espectroscopias.
- Técnicas avanzadas de caracterización de propiedades dimensionales y superficiales de los productos manufacturados.

Objetivos específicos:

- 1. Profundizar en el conocimiento de diferentes técnicas utilizadas en la caracterización de las propiedades de los diferentes grupos de materiales que se utilizan en la fabricación de piezas
- 2. Aumentar el conocimiento sobre la caracterización de las propiedades dimensionales y superficiales del productos fabricados por diferentes tecnologías.

Dedicación: 10h Grupo grande/Teoría: 4h Grupo mediano/Prácticas: 6h

Optimización y control de calidad de los procesos de fabricación

Descripción:

- Técnicas de diseño de experimentos (DOE).
- Análisis estadístico de los resultados.
- Métodos y técnicas de modelización de los procesos de fabricación.

Objetivos específicos:

- 1. Aprender a utilizar técnicas de DOE para la concepción, realización y análisis de experimentos en la fabricación de piezas
- 2. Introducción al conocimiento sobre otras técnicas de modelización de procesos de fabricación

Dedicación: 8h

Grupo grande/Teoría: 4h Grupo mediano/Prácticas: 4h

SISTEMA DE CALIFICACIÓN

La nota final se da sobre 10. Se seguirá un sistema de evaluación continua que incluye los siguientes ítems con los respectivos pesos relativos:

Examen final sobre todo el curso - 30% Papel sobre deformación plástica severa y defensa oral - 25 % Informes de prácticas de laboratorio - 20% Trabajos en el aula (relacionado con las clases invertidas y ejercicios propuestos) - 25 %

Esta asignatura no tiene prueba de reevaluación

BIBLIOGRAFÍA

Básica:

- Singh Kalsi, Sukhminderbir. Burnishing Of EN-31. Saarbrücken: LAP LAMBERT Academic Publishing, [2015]. ISBN 9783659819858.
- Martín Llorente, Óscar. Problemas resueltos de mecanizado de metales. Valladolid: Ediciones Universidad de Valladolid, [2018]. ISBN 9788484489597.
- Curry, Guy L; Feldman, Richard Martin. Manufacturing systems modeling and analysis [en línea]. 2nd ed. Berlin; Heidelberg: Springer, cop. 2011 [Consulta: 15/04/2020]. Disponible a: http://dx.doi.org/10.1007/978-3-642-16618-1. ISBN 9783642166181.
- ASM handbook. Vol. 5, Surface engineering. 10th ed. Materials Park, Ohio: ASM International, 1999. ISBN 087170384X.

Fecha: 21/07/2024 Página: 4 / 4