

Guía docente 820752 - GEPFR - Aplicación de Electrónica de Potencia para Generación Renovable

Última modificación: 16/04/2024

Unidad responsable: Escuela Técnica Superior de Ingeniería Industrial de Barcelona

Unidad que imparte: 709 - DEE - Departamento de Ingeniería Eléctrica.

Titulación: MÁSTER UNIVERSITARIO EN INGENIERÍA DE LA ENERGÍA (Plan 2013). (Asignatura optativa).

MÁSTER UNIVERSITARIO EN INGENIERÍA INDUSTRIAL (Plan 2014). (Asignatura optativa).

MÁSTER UNIVERSITARIO EN SISTEMAS Y ACCIONAMIENTOS ELÉCTRICOS (Plan 2021). (Asignatura

optativa).

MÁSTER UNIVERSITARIO EN INGENIERÍA DE LA ENERGÍA (Plan 2022). (Asignatura optativa).

Curso: 2024 Créditos ECTS: 5.0 Idiomas: Catalán, Castellano, Inglés

PROFESORADO

Profesorado responsable: Cheah Mañé, Marc

Otros: Cheah Mañé, Marc

CAPACIDADES PREVIAS

Sistemas eléctricos y electrónicos, Máquinas eléctricas

REQUISITOS

Modelos e implementación de controles

Fecha: 23/01/2025 **Página:** 1 / 4

METODOLOGÍAS DOCENTES

Metodología de la enseñanza:

Las metodologías de enseñanza del curso son las siguientes:

- Ponencias y conferencias: presentación de conceptos principales a cargo de profesores o ponentes invitados.
- Sesiones participativas: resolución colectiva de ejercicios con el profesor y otros alumnos en el aula
- Trabajo teórico / práctico supervisado (TD): actividad de aula realizada de forma individual o en pequeños grupos, con el asesoramiento y supervisión del profesor.
- Asignación de tareas de extensión reducida (PR): realizar tareas de extensión reducida, de forma individual o en grupo.
- Tarea de asignación de amplia extensión (PA): implementación del modelo y redacción de un informe que debe incluir el enfoque, resultados y conclusiones.
- Actividades de evaluación (EV).

Actividades de formación:

Las actividades formativas del curso son las siguientes:

- Actividades presenciales
- o Charlas y conferencias: aprendizaje basado en la comprensión y síntesis de los conocimientos presentados por el profesor o por ponentes invitados.
- o Sesiones participativas: aprendizaje basado en la participación en la resolución colectiva de ejercicios con el profesor y otros alumnos del aula.
- o Trabajo teórico / práctico supervisado (TD): ejercicios y trabajos prácticos, de forma individual o en pequeños grupos, con el asesoramiento del profesor.
- Actividades de estudio
- o Asignación de tareas de extensión reducida (PR): Actividades opcionales relacionadas con la revisión de conceptos que los alumnos deben conocer para desarrollar el curso sin dificultades.
- o Asignación de tareas de amplia extensión (PA): asignaciones que involucran la implementación de modelos de simulación y la redacción de informes relacionados
- o Autoestudio (EA): aprendizaje basado en el estudio o ampliación de los contenidos del material de aprendizaje, de forma individual o en grupo, entendiendo, asimilando, analizando y sintetizando conocimientos.

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

Trabajar los aspectos eléctricos de las energías renovables, desde la modelización y control de las máquinas eléctricas necesarias hasta los aspectos de integración a la red eléctrica.

- 1. Dotar a los estudiantes de conocimientos básicos sobre los principios utilizados en las diferentes fuentes de energía renovable.
- 2. Introducir las diferentes fuentes de energía renovable para generación eléctrica, centrándose en la solar fotovoltaica y la eólica.
- 3. Profundizar en los aspectos eléctricos de las energías renovables tratadas: generadores eléctricos de inducción, síncronos, paneles fotovoltaicos, etc?
- 4. Trabajar las diferentes tecnologías de conversión de la energía generada con el objetivo de integrarla en una red eléctrica o microrred.
- 5. Profundizar en técnicas de control para maximizar la generación y controlar óptimamente la conexión a la red.
- 6. Estudiar diferentes aspectos de la integración a la red eléctrica: estabilidad del voltaje y la frecuencia, efecto de las perturbaciones de la red sobre la generación, etc.
- 7. Desarrollar trabajos prácticos basados en simulación.

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas grupo grande	45,0	36.00
Horas aprendizaje autónomo	80,0	64.00

Dedicación total: 125 h

Fecha: 23/01/2025 Página: 2 / 4

CONTENIDOS

Introducción a sistemas de generación renovable

Descripción:

Se dará una introducción global al curso cubriendo todos los aspectos principales relacionados con la generación de energía renovable, específicamente los sistemas fotovoltaicos y eólicos. Se describirán técnicas de modelado y análisis.

Objetivos específicos:

Introducción y contexto del curso. Aspectos básicos de modelado.

Actividades vinculadas:

Revisar los conocimientos básicos en modelado de convertidores y máquinas eléctricas.

Dedicación: 6h

Grupo grande/Teoría: 2h Aprendizaje autónomo: 4h

Sistemas de generación fotovoltaica

Descripción:

Revisión del recurso solar y descripción de los principios de funcionamiento y control de los inversores fotovoltaicos.

Objetivos específicos:

Comprensión de inversores fotovotaicos e implementación de modelos.

Actividades vinculadas:

Modelos dinámicos y de estado estacionario del sistema fotovoltaico

Dedicación: 9h

Grupo grande/Teoría: 2h 30m Aprendizaje autónomo: 6h 30m

Sistemas de generación eólica

Descripción:

Revisión de recurso eólico y descripción de operación y control de aerogeneradores Tipo 1, 2, 3 y 4.

Objetivos específicos:

Comprensión de convertidores de aerogeneradores e implementación de modelos.

Actividades vinculadas:

Modelos dinámicos y de estado estacionario del sistemas eólicos

Dedicación: 18h 30m Grupo grande/Teoría: 4h 30m Aprendizaje autónomo: 14h

Integración a la red de generación renovable

Descripción:

Descripción de los controles de la planta de energía y el cumplimiento de la integración de la red.

Objetivos específicos:

Comprender la necesidad del control de una planta de energía y los requisitos de la red.

Dedicación: 1h 30m Grupo grande/Teoría: 1h 30m

SISTEMA DE CALIFICACIÓN

Prueba escrita (PE): 50%

Trabajo realizado individualmente o en grupo (TR): 50%

BIBLIOGRAFÍA

Complementaria:

- Ackermann, Thomas. Wind power in power systems [en línea]. 2nd ed. Chichester; Hoboken, N.J.: Wiley, 2012 [Consulta: 05/02/2021]. Disponible a: https://onlinelibrary.wiley.com/doi/book/10.1002/9781119941842. ISBN 978-0470974162.
- Manwell, J. F. [et al.]. Wind energy explained: theory, design and application [en línea]. 2nd ed. [Chichester]: John Wiley & Sons, 2009 [Consulta: 29/11/2024]. Disponible a: <a href="https://ebookcentral-proquest-com.recursos.biblioteca.upc.edu/lib/upcatalunya-ebooks/detail.action?pq-origsite=primo&docID=589269991003727779706711". ISBN 9780470015001.
- Infield, D. G; Freris L.L. Renewable energy in power systems. Chichester, U.K.: John Wiley & Sons, 2008. ISBN 9780470017494.
- Anaya-Lara, Olimpo [et al.]. Wind energy generation: modelling and control [en línea]. Chichester, U.K.: John Wiley & Sons, 2009 [Consulta: 05/02/2021]. Disponible a: https://ebookcentral.proquest.com/lib/upcatalunya-ebooks/detail.action?docID=454292. ISBN 9780470714331.
- Quaschning, Volker. Understanding renewable energy systems. 2nd ed. London: Earthscan, 2016. ISBN 9781317669425.

Fecha: 23/01/2025 **Página:** 4 / 4