

Guía docente 820465 - ESU - Ingeniería de Superficies

Última modificación: 27/05/2024

Unidad responsable: Escuela de Ingeniería de Barcelona Este

Unidad que imparte: 702 - CEM - Departamento de Ciencia e Ingeniería de Materiales.

Titulación: Curso: 2024 Créditos ECTS: 6.0

Idiomas: Catalán

PROFESORADO

Profesorado responsable: MIQUEL MORALES COMAS

Otros: Segon quadrimestre:

GEMMA FARGAS RIBAS - M10 MIGUEL MORALES COMAS - M10

CAPACIDADES PREVIAS

Conocimientos de ciencia de los materiales y química.

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Transversales:

1. APRENDIZAJE AUTÓNOMO - Nivel 3: Aplicar los conocimientos alcanzados en la realización de una tarea en función de la pertinencia y la importancia, decidiendo la manera de llevarla a cabo y el tiempo que es necesario dedicarle y seleccionando las fuentes de información más adecuadas.

METODOLOGÍAS DOCENTES

Clase expositiva participativa Aprendizaje autónomo Estudio de casos

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

- 1- Conocer las técnicas de análisis y caracterización de la superficie.
- 2- Adquirir un conocimiento básico de los diversos procesos de modificación superficial.
- 3- Aprender a seleccionar el proceso de modificación superficial en función de la aplicación.

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Тіро	Horas	Porcentaje
Horas aprendizaje autónomo	90,0	60.00
Horas grupo grande	60,0	40.00

Dedicación total: 150 h

Fecha: 07/07/2024 **Página:** 1 / 5

CONTENIDOS

(CAST) Tema 1. Introducción

Descripción:

- 1.1 Finalidades de la ingeniería de superficies
- 1.2 Descripción de la superficie
- 1.3 Fenómenos superficiales: corrosión, desgaste y fatiga

Objetivos específicos:

Describir los fenómenos superficiales que limitan la vida útil de los materiales y comprender las vías por las que la ingeniería de superficies permite controlar y disminuir sus efectos.

Actividades vinculadas:

Exposición de casos pràcticos

Dedicación: 5h

Grupo grande/Teoría: 3h Aprendizaje autónomo: 2h

(CAST) Tema 2. Caracterización de la superficie

Descripción:

- 2.1. Técnicas de microscopía
- 2.2. Técnicas de espectroscopia
- 2.3. Equipos de medida y ensayos

Objetivos específicos:

Describir las distintas técnicas que permiten caracterizar la superficie a diferentes escalas y profundidades tanto a nivel microestructural como químico y sus propiedades mecánicas.

Dedicación: 18h Grupo grande/Teoría: 7h Aprendizaje autónomo: 11h

(CAST) Tema 3. Limpieza de superficies

Descripción:

- 3.1 Procesos de desengrase
- 3.2 Eliminación de depósitos orgánicos
- 3.3 Eliminación de capas de protección superficial
- 3.4 Eliminación de productos de corrosión y oxidación

Objetivos específicos:

Comprender la importancia de las etapas de limpieza de la superficie previa a los procesos de modificación superficial. Establecer un criterio que permita seleccionar el proceso de limpieza adecuado en función del estado de partida de la superficie y/o de su posterior tratamiento y/o aplicación.

Dedicación: 14h Grupo grande/Teoría: 5h Aprendizaje autónomo: 9h

Fecha: 07/07/2024 **Página:** 2 / 5

(CAST) Tema 4. Procesos de modificación superficial sin provocar cambios en la composición química

Descripción:

4.1. Tratamientos térmicos: Templado y revenido

4.2. Tratamientos mecánicos: Granallado

Objetivos específicos:

Comprender el fundamento teórico en el que se basan los procesos

Describir las etapas en las que estos procesos se llevan a cabo a nivel industrial

Comprender que efectos provocan en la superficie desde un punto de vista de la microestructura y las propiedades mecánicas. Establecer en qué condiciones de trabajo son útiles este tipo de procesos de modificación superficial.

Actividades vinculadas:

Exposición de casos pràcticos

Dedicación: 12h Grupo grande/Teoría: 7h Aprendizaje autónomo: 5h

(CAST) Tema 5. Procesos de modificación superficial que provocan cambios en la composición química

Descripción:

- 5.1. Cementación
- 5.2. Nitruración
- 5.3. Pasivado
- 5.4. Fosfatado
- 5.5. Implantación iónica

Objetivos específicos:

- 1-Comprender el fundamento teórico en el que se basan los procesos
- 2-Describir las etapas en las que estos procesos se llevan a cabo a nivel industrial
- 3-Comprender que efectos provocan en la superficie desde un punto de vista de la microestructura y las propiedades mecánicas.
- 4-Establecer en qué condiciones de trabajo son útiles este tipo de procesos de modificación superficial.

Actividades vinculadas:

Exposición de casos pácticos

Dedicación: 21h

Grupo grande/Teoría: 12h Aprendizaje autónomo: 9h

(CAST) Tema 6. Procesos de modificación superficial miediante la aplicación de un recubrimiento. Técnicas convencionales.

Descripción:

- 6.1. Introducción a los recubrimientos
- 6.2. Recubrimientos electroquímicos
- 6.3. Recubrimientos químicos
- 6.4. Galvanizado

Actividades vinculadas:

Exposición de casos prácticos

Dedicación: 21h

Grupo grande/Teoría: 11h Aprendizaje autónomo: 10h

Fecha: 07/07/2024 Página: 3 / 5

(CAST) Tema 7. Procesos de modificación superficial mediante la aplicación de un recubrimiento. Técnicas avanzadas

Descripción:

- 7.1. Proyección térmica
- 7.2. Deposición química de vapor
- 7.3. Deposición física de vapor

Actividades vinculadas:

Exposición de casos prácticos

Dedicación: 16h Grupo grande/Teoría: 7h Aprendizaje autónomo: 9h

(CAST) Tema 8. Proceso de modificación superficial mediante la aplicación de un recubrimiento. Recubrimientos orgánicos (pinturas, esmaltes)

Descripción:

- 8.1. Tecnología y funciones
- 8.2. Tipos y criterios de selección
- 8.3. Procesos de aplicación
- 8.4. Procesos patológicos

Actividades vinculadas:

Exposición de casos prácticos

Dedicación: 16h Grupo grande/Teoría: 6h Aprendizaje autónomo: 10h

Tema 9. Nanotecnolgias en superficies

Descripción:

- 9.1. Deposición por láser pulsado
- 9.2. Litografía

Dedicación: 7h

Grupo grande/Teoría: 2h Aprendizaje autónomo: 5h

SISTEMA DE CALIFICACIÓN

Primer parcial: 15% Segundo parcial: 25% Tercer parcial: 35% Trabajo: 15% Prácticas: 10%

En esta asigantura se programará un examen de re-evaluación

NORMAS PARA LA REALIZACIÓN DE LAS PRUEBAS.

Evaluación del aprendizaje autónomo: elaboración de un informe ypresentación oral

Fecha: 07/07/2024 **Página:** 4 / 5

BIBLIOGRAFÍA

Básica:

- J. A. Puértolas Ráfales, R. Ríos Jordana, M. Castro Corella, J. M. Casals Bustos. Tecnología de superficies en materiales. Madrid: Síntesis, D.L. 2010. ISBN 9788497566803.
- Vázquez Vaamonde, Alfonso J.; Damborenea González, Juan J. de. Ciencia e ingeniería de la superficie de los materiales metálicos. Madrid: Consejo Superior de Investigaciones Científicas, 2000. ISBN 8400079205.
- Davis, J. R.. Surface engineering : for corrosion and wear resistance. Materials Park: ASM International, cop. 2001. ISBN 0871707004.

Complementaria:

- Martin, Peter M. Introduction to surface engineering and functionally engineered materials. Hoboken, N.J: Wiley, 2011. ISBN 9781118171899.
- Burnell-Gray, J.S.; Datta, P.K. Surface engineering casebook. Abington (Cambridge): Woodhead Publishing, Ltd. Abington Hall, 1996. ISBN 1855732602.
- Adamson, Arthur W. Physical chemistry of surfaces. 6th ed. New York [etc.]: John Wiley & Sons, 1997. ISBN 9780471148739.

Fecha: 07/07/2024 **Página:** 5 / 5