

Course guide 820465 - ESU - Engineering Surfaces

Last modified: 27/05/2024

Degree:	Academic year: 2024	ECTS Credits: 6.0
Teaching unit:	702 - CEM - Department o	f Materials Science and Engineering.
Unit in charge:	Barcelona East School of E	ingineering

LECTURER	
Coordinating lecturer:	MIQUEL MORALES COMAS
Others:	Segon quadrimestre: GEMMA FARGAS RIBAS - M10 MIGUEL MORALES COMAS - M10

PRIOR SKILLS

Languages: Catalan

Basic knowledge of materials science and chemistry.

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Transversal:

1. SELF-DIRECTED LEARNING - Level 3. Applying the knowledge gained in completing a task according to its relevance and importance. Deciding how to carry out a task, the amount of time to be devoted to it and the most suitable information sources.

TEACHING METHODOLOGY

Face-to-face expository classes (Theory) Face-to face directed classes (Problem solving) Cooperative learning

LEARNING OBJECTIVES OF THE SUBJECT

1- Get to Know analytical techniques and characterization of the surface.

- 2- Gaining basic knowledge of surface modification techniques.
- 3- Learning to select surface modification techniques based on applications.

STUDY LOAD

Туре	Hours	Percentage
Self study	90,0	60.00
Hours large group	60,0	40.00

Total learning time: 150 h

CONTENTS

(ENG) Chapter 1. Introduction

Description:

1.1. Surface engineering goals

1.2. Surface description

1.3. Surface phenomena: corrosión, wear and fatigue

Specific objectives:

Describe the surface phenomena that limit the useful life of materials and understand the ways that engineering surfaces offers to control and reduce their effects.

Related activities: Presentation of case studies

Full-or-part-time: 5h

Theory classes: 3h Self study : 2h

(ENG) Chapter 2. Surface characterization

Description:

2.1. Microscopy techniques

- 2.2. Spectroscopy techniques
- 2.3. Measurements and tests

Specific objectives:

Describe the surface characterization techniques at different scales to determine: microstructure, chemical composition and mechanical properties

Full-or-part-time: 18h

Theory classes: 7h Self study : 11h

(ENG) Chapter 3. Surface cleaning:

Description:

- 3.1 Degreasing processes
- 3.2 Removal of organic deposits
- 3.3 Removal of protective layers
- 3.4 Removal of corrosión and oxidation products

Specific objectives:

To understand the importance of cleaning processes prior to surface modification. Establish a criterion to select the appropriate cleaning process depending on the initial state of the surface and/or further treatment and/or application.

Full-or-part-time: 14h Theory classes: 5h Self study : 9h

(ENG) Chapter 4. Surface modification without changing the material chemically

Description:

4.1. Thermal treatments: Quenching and annealing

4.2. Mechanical treatments: Shot peening

Specific objectives:

Understand basic therory of these processes

Describe the stages on which these processes are carried out at industrial level Understand their effect on the surface regarding microstructure and mechanical properties Know under which work conditions these processes are useful

Related activities: Presentation of case studies

Full-or-part-time: 12h Theory classes: 7h Self study : 5h

(ENG) Chapter 5. Surface modification by altering surface chemistry

Description:

- 5.1. Carburization
- 5.2. Nitruration
- 5.3. Passivation
- 5.4. Phosphatation
- 5.5. Ionic implantation

Specific objectives:

1-Understand basic therory of these processes

- 2-Describe the stages on which these processes are carried out at industrial level
- 3-Understand their effect on the surface regarding microstructure and mechanical properties
- 4-Know under which work conditions these processes are useful

Related activities: Presentation of case studies

Full-or-part-time: 21h Theory classes: 12h Self study : 9h

(ENG) Chapter 6. Surface modification by adding a new material onto the surface (coating). Conventional techniques

Description:

6.1.Introduction to coatings6.2. ELectroplating6.3. Electroless6.4. Galvanized

Related activities: Presentation of case studies

Full-or-part-time: 21h Theory classes: 11h Self study : 10h

(ENG) Chapter 7. Surface modification by adding a new material onto the surface (coating). Advanced techniques

Description:

7.1. Thermal spray

7.2. Chemical vapor deposition

7.3. Physical vapor deposition

Related activities:

Presentation of case studies

Full-or-part-time: 16h Theory classes: 7h Self study : 9h

(ENG) Chapter 8. Surface modification by adding a new material onto the surface (coating): Organic coatings

Description:

8.1. Technology and functions8.2. Types and selection criteria9.2. Arriantian processor

8.3. Aplication processes

8.4. Phatological processes

Related activities: Presentation of case studies

Full-or-part-time: 16h Theory classes: 6h Self study : 10h

Chapter 9. Nanotechnology in surfaces

Description: 9.1. Pulsed laser deposition 9.2. Litography

Full-or-part-time: 7h Theory classes: 2h Self study : 5h

GRADING SYSTEM

First partial test: 15% Second partial test: 25% Third partial test: 35% Work: 15% Laboratory: 10%

In this subject a reassessment test will be scheduled

EXAMINATION RULES.

Autonomous learning evaluation: report and oral presentation

BIBLIOGRAPHY

Basic:

- J. A. Puértolas Ráfales, R. Ríos Jordana, M. Castro Corella, J. M. Casals Bustos. Tecnología de superficies en materiales. Madrid: Síntesis, D.L. 2010. ISBN 9788497566803.

- Vázquez Vaamonde, Alfonso J.; Damborenea González, Juan J. de. Ciencia e ingeniería de la superficie de los materiales metálicos. Madrid: Consejo Superior de Investigaciones Científicas, 2000. ISBN 8400079205.

- Davis, J. R.. Surface engineering : for corrosion and wear resistance. Materials Park: ASM International, cop. 2001. ISBN 0871707004.

Complementary:

- Martin, Peter M. Introduction to surface engineering and functionally engineered materials. Hoboken, N.J: Wiley, 2011. ISBN 9781118171899.

- Burnell-Gray, J.S.; Datta, P.K. Surface engineering casebook. Abington (Cambridge): Woodhead Publishing, Ltd. Abington Hall, 1996. ISBN 1855732602.

- Adamson, Arthur W. Physical chemistry of surfaces. 6th ed. New York [etc.]: John Wiley & Sons, 1997. ISBN 9780471148739.