

Course guide 820322 - EEEN - Energy Storage

Last modified: 27/05/2024

Unit in charge: Barcelona East School of Engineering
Teaching unit: 748 - FIS - Department of Physics.

709 - DEE - Department of Electrical Engineering.

Degree: BACHELOR'S DEGREE IN ENERGY ENGINEERING (Syllabus 2009). (Compulsory subject).

Academic year: 2024 ECTS Credits: 6.0 Languages: Catalan, Spanish

LECTURER

Coordinating lecturer: José López López

Others: Primer quadrimestre:

JUAN ANTONIO GARCÍA-ALZÓRRIZ PARDO - Grup: T11, Grup: T12

Segon quadrimestre:

JUAN ANTONIO GARCÍA-ALZÓRRIZ PARDO - Grup: M11, Grup: M12, Grup: M13

JOSE LOPEZ LOPEZ - Grup: M11, Grup: M12, Grup: M13

REQUIREMENTS

SISTEMES ELECTRÒNICS - Prerequisit

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:

- 2. Analyse and simulate specific energy systems.
- 3. Understand the fundamentals of automatic control methods.

Transversal

1. EFFICIENT ORAL AND WRITTEN COMMUNICATION - Level 3. Communicating clearly and efficiently in oral and written presentations. Adapting to audiences and communication aims by using suitable strategies and means.

TEACHING METHODOLOGY

- Class of theory where the program is explained and are oriented and discuss the topics studied by students autonomously.
- Practices Laboratory.
- Students will perform two different projects; a transversal project in coordination with the other subjects of the 6th semester of Grade Energy and a second project (distance learning) in group with specific content of the course.

LEARNING OBJECTIVES OF THE SUBJECT

To know the main energy storage technologies and their applications

Date: 07/07/2024 **Page:** 1 / 3

STUDY LOAD

Туре	Hours	Percentage
Self study	90,0	60.00
Hours large group	45,0	30.00
Hours small group	15,0	10.00

Total learning time: 150 h

CONTENTS

1.- Introduction. Fields of application: generation, transmission and distribution, final customer.

Description:

Full-or-part-time: 9h Theory classes: 3h Self study: 6h

2.- Storage of electricity in batteries. Batteries. Parameters. Regulations.

Description:

Full-or-part-time: 33h 30m Theory classes: 7h 30m Laboratory classes: 6h Self study: 20h

(ENG) 3.- Càrrega i supervisió de bateries. Electrònica de potència. Convertidors estàtics. Sistemes de gestió de bateries (BMS).

Description:

Full-or-part-time: 22h 30m

Theory classes: 3h Laboratory classes: 6h Self study: 13h 30m

4.- Thermal Energy Storage. Storage in Tanks. Thermal salts. Thermal Energy Concentration Systems

Description:

Full-or-part-time: 12h Theory classes: 4h 30m Self study: 7h 30m

5. Compressed air energy storage (CAES). Geological CAES facilities. CAES facilities in the world

Description:

Full-or-part-time: 12h Theory classes: 4h 30m Self study: 7h 30m

6. Other forms of energy storage: Storage superconductors (SMES), pump, flywheel, supercapacitors, fuel cell.

Description:

Full-or-part-time: 31h Theory classes: 10h 30m Laboratory classes: 3h Self study: 17h 30m

7.- Applications: Electric Vehicle, uninterruptible power supplies (UPS), renewable energy, microgrids, smartgrids.

Description:

Full-or-part-time: 30h Theory classes: 12h Self study: 18h

GRADING SYSTEM

Final Note: Exam (40%) + Transversal Work (25%) + Laboratory (20%) + Especific Work (15%) Reevaluation exam is not necessary

Date: 07/07/2024 **Page:** 3 / 3