

Course guide 390450 - ASTAT - Advanced Statistics

Last modified: 03/06/2024

Unit in charge: Barcelona School of Agri-Food and Biosystems Engineering

Teaching unit: 749 - MAT - Department of Mathematics.

Degree: BACHELOR'S DEGREE IN AGRICULTURAL ENGINEERING (Syllabus 2009). (Optional subject).

BACHELOR'S DEGREE IN AGRICULTURAL, ENVIRONMENTAL AND LANDSCAPE ENGINEERING (Syllabus

2009). (Optional subject).

BACHELOR'S DEGREE IN BIOSYSTEMS ENGINEERING (Syllabus 2009). (Optional subject). BACHELOR'S DEGREE IN FOOD ENGINEERING (Syllabus 2009). (Optional subject).

BACHELOR'S DEGREE IN AGRONOMIC SCIENCE ENGINEERING (Syllabus 2018). (Optional subject).

Academic year: 2024 ECTS Credits: 6.0 Languages: English

LECTURER

Coordinating lecturer: MONICA BLANCO ABELLAN

Others:

REQUIREMENTS

Students should have passed the course STATISTICS (Q3).

DEGREE COMPETENCES TO WHICH THE SUBJECT CONTRIBUTES

Specific:

1. Ability to solve mathematic problems in an engineering context. Ability to apply the knowledge of statistics and optimization.

TEACHING METHODOLOGY

A combination of lectures, problem solving and computer labs sessions, and discussion of scientific papers and oral presentations.

LEARNING OBJECTIVES OF THE SUBJECT

- ${\bf 1}.$ To analyse large sets of variables by means of multivariate techniques.
- 2. To design and analyse experiments to improve the quality of a process.
- 3. To identify the significant effects and interactions in factorial designs.
- 4. To analyse the work conditions to obtain the best possible answer using the techniques of response surface.
- 5. To connect and use old statistical knowledge to develop new concepts and techniques.
- 6. To get acquainted with a number of statistical software packages to carry out multivariate analysis and experimental designs.

STUDY LOAD

Туре	Hours	Percentage
Self study	90,0	60.00
Hours medium group	60,0	40.00

Total learning time: 150 h

Date: 05/06/2024 **Page:** 1 / 4

CONTENTS

(ENG) INTRODUCTION TO MULTIVARIATE ANALYSIS

Description:

- 1.1. The analysis of variance: with a single factor; with two factors.
- 1.2. Relationships between sets of variables: multiple linear regression.
- 1.3. Ordination, or dimension reduction, techniques: principal components analysis.
- 1.4. Grouping data techniques: cluster analysis.

Related activities:

Activities 1, 2, 3, 4.

Full-or-part-time: 68h Theory classes: 20h Laboratory classes: 8h Self study: 40h

(ENG) TWO-LEVEL FACTORIAL DESIGNS

Description:

- 2.1. Introduction to two-level factorial designs (2k). Calculation of effects. Determination of the significance of effects.
- 2.2. Introduction to two-level fractional factorial designs. Defining relation. Calculation of effects. Determination of the significance of effects.

Related activities:

Activities 1, 2, 3, 4.

Full-or-part-time: 41h Theory classes: 10h Laboratory classes: 6h Self study: 25h

(ENG) RESPONSE SURFACE METHODS AND DESIGNS

Description:

- 3.1. Introduction to response surface methodology. The method of steepest ascent. Designs for fitting first-order and second-order models.
- 3.2. Central composite designs.
- 3.3. Contour plots and canonical analysis.

Related activities:

Activities 1, 2, 3, 4.

Full-or-part-time: 41h Theory classes: 10h Laboratory classes: 6h Self study: 25h

ACTIVITIES

ACTIVITY 1: LECTURES

Full-or-part-time: 108h Theory classes: 38h Self study: 70h

ACTIVITY 2: INDIVIDUAL WRITTEN TEST

Full-or-part-time: 2h Theory classes: 2h

ACTIVITY 3: PROBLEM SOLVING AND COMPUTER LABS

Full-or-part-time: 20h Laboratory classes: 10h Self study: 10h

ACTIVITY 4: DISCUSSION OF SCIENTIFIC PAPERS AND ORAL PRESENTATIONS

Full-or-part-time: 20h Laboratory classes: 10h Self study: 10h

GRADING SYSTEM

Final Grade = 0.5 * Coursework (activities 3 and 4) + 0.2 * Mid-Term Exam + 0.3 * Final Exam

EXAMINATION RULES.

BIBLIOGRAPHY

Basic:

- Granato, D.; Ares, G.. Mathematical and statistical methods in food science and technology. Wiley-Blackwell, 2014. ISBN 9781118433683.
- Montgomery, Douglas C.. Design and analysis of experiments. 3a ed. New York: John Wiley & Sons, 1991. ISBN 0471520004.
- Box, George E. P.; Hunter, J. Stuart; Hunter, William Gordon. Statistics for experimenters: design, innovation, and discovery. 2a ed.. Hoboken: John Wiley & Sons, 2005. ISBN 0471718130.
- Hair, Joseph F.. Multivariate data analysis : a global perspective. 7a ed.. Upper Saddle River, N.J. [etc.]: Pearson, 2010. ISBN 9780135153093.

Complementary:

- Hicks, Charles R.; Turner, Kenneth V.. Fundamental concepts in the design of experiments. 5a ed. New York: Oxford University Press, 1993. ISBN 0195122739.
- Moore, David S.; McCabe, George P.; Craig, Bruce A.. Introduction to the practice of statistics. 7a ed. New York: W.H. Freeman, 2012. ISBN 9781429286640.
- Myers, Raymond H.; Anderson-Cook, Christine M.; Montgomery, Douglas C.. Response surface methodology: process and product

Date: 05/06/2024 **Page:** 3 / 4

optimization using designed experiments. 3a ed.. Hoboken: Wiley, 2009. ISBN 9780470174463.

- Daniel, Wayne W.. Biostatistics : basic concepts and methodology for the health sciences. 10a ed.. Hoboken: John Wiley & Sons, 2014. ISBN 9781118362204.