

Guía docente 295761 - 295EM121 - Tecnología de Materiales Compuestos

Última modificación: 27/05/2024

Unidad responsable: Escuela de Ingeniería de Barcelona Este

Unidad que imparte: 702 - CEM - Departamento de Ciencia e Ingeniería de Materiales.

Titulación: MÁSTER UNIVERSITARIO ERASMUS MUNDUS EN CIENCIA E INGENIERÍA DE MATERIALES AVANZADOS

(Plan 2014). (Asignatura optativa).

MÁSTER UNIVERSITARIO EN CIENCIA E INGENIERÍA AVANZADA DE MATERIALES (Plan 2019). (Asignatura

optativa).

MÁSTER UNIVERSITARIO ERASMUS MUNDUS EN CIENCIA E INGENIERÍA DE MATERIALES AVANZADOS

(Plan 2021). (Asignatura optativa).

Curso: 2024 Créditos ECTS: 6.0 Idiomas: Castellano

PROFESORADO

Profesorado responsable: M Lluisa Maspoch

Otros:

CAPACIDADES PREVIAS

Tener conocimientos sobre materiales plásticos al nivel de las asignaturas Fundamentos de Polímeros y Materiales Plásticos y compuestos (grado de Ingeniería de materiales.)

Para no egresados de grados relacionados con Ciencia e Ingeniería de Materiales: haber cursado la asignatura 240EM013 - Estructura y Propiedades de Polímeros.

REQUISITOS

Conocimientos sobre materiales plásticos, ceràmicos i metales

COMPETENCIAS DE LA TITULACIÓN A LAS QUE CONTRIBUYE LA ASIGNATURA

Específicas:

CEMCEAM-02. Aplicar métodos innovadores para el diseño, simulación, optimización y control de procesos de producción y transformación de materiales

Transversales:

06 URI. USO SOLVENTE DE LOS RECURSOS DE INFORMACIÓN: Gestionar la adquisición, la estructuración, el análisis y la visualización de datos e información en el ámbito de la especialidad y valorar de forma crítica los resultados de esta gestión.

METODOLOGÍAS DOCENTES

MD1: Clase expositiva con material disponible en campus digital

MD2: Clase de resolución de ejercicios basada en trabajo cooperativo

MD3: Realización de prácticas en laboratorio

MD4: Presentación oral de un tema

Fecha: 09/07/2024 **Página:** 1 / 5

OBJETIVOS DE APRENDIZAJE DE LA ASIGNATURA

- 1. Conocer los principales tipos de matrices orgánicas, de segundas fases.
- 2. Conocer las propiedades de la interfase y cómo se puede modificar
- 3. Conocer los principales procesos de procesamiento de materiales compuestos con fibras.
- 4. Aprender a diseñar un material compuesto laminado con el objetivo de optimizar su vida útil en condiciones reales de servicio.
- 5.Conocer los principales compuestos de matriz inorgánica, particularmente sus fases y propiedades, de cara al diseño microestructural óptimo de ellos según los requisitos de la aplicación.

HORAS TOTALES DE DEDICACIÓN DEL ESTUDIANTADO

Tipo	Horas	Porcentaje
Horas grupo grande	28,0	18.67
Horas aprendizaje autónomo	108,0	72.00
Horas grupo pequeño	14,0	9.33

Dedicación total: 150 h

CONTENIDOS

Tema 1. Introducción

Descripción:

Definición

Clasificación

Ejemplos de aplicaciones

Compuestos naturales

La madera

Dedicación: 6h

Grupo grande/Teoría: 3h Aprendizaje autónomo: 3h

Tema 2. Compuestos con fibras.

Descripción:

Tipos de fibras

Tipos de matrices poliméricas

Interfases fibra matriz.

Factores clave que determinan las propiedades de un compuesto.

Actividades vinculadas:

Práctica de laboratorio.

Dedicación: 21h

Grupo grande/Teoría: 7h 30m Grupo mediano/Prácticas: 1h 30m Aprendizaje autónomo: 12h

Fecha: 09/07/2024 **Página:** 2 / 5

Tema 3. Compuestos con partículas.

Descripción:

Partículas rígidas: tipos de partículas, función de cada tipo de partícula, efectos sobre las propiedades mecánicas y sobre el comportamiento a la fractura y la propagación de grietas. Incorporación.

Partículas elastoméricas: preparación de estos compuestos, ejemplos y aplicaciones. Efecto sabre las propiedades mecánicas y

sobre la tenacidad

Dedicación: 8h 30m Grupo grande/Teoría: 3h Aprendizaje autónomo: 5h 30m

Tema 4. Espumas.

Descripción:

Definiciones por tipo de celda y tamaño.

Métodos de preparación. Ejemplos y aplicaciones.

Propiedades y función del tamaño de las celdas.

Dedicación: 4h 30m

Grupo grande/Teoría: 1h 30m Aprendizaje autónomo: 3h

Tema 5. Nanocompuestos.

Descripción:

Clasificación y tipos de nanocargas en matrices poliméricas.

Métodos de preparación de nanocompuestos de matriz orgánica.

Relación estructura y propiedades.

Ejemplos de aplicaciones.

Dedicación: 4h 30m

Grupo grande/Teoría: 1h 30m Aprendizaje autónomo: 3h

Tema 6. Procesado de compuestos

Descripción:

Moldeo manual y por proyección.

SMC y BMC.

Moldeo por compresión.

Saco de vacío, infusión y RTM.

Autoclave.

Pultrusión y arrollamiento de filamentos.

RIM, RRIM y SRIM

Actividades vinculadas:

Trabajo dirigido.

Dedicación: 11h Actividades dirigidas: 3h

Aprendizaje autónomo: 8h

Fecha: 09/07/2024 **Página:** 3 / 5

Tema 7. Micro y Macromecánica de materiales compuestos con fibras largas

Descripción:

Propiedades mecánicas unidireccionales de materiales compuestos con fibras largas a partir de propiedades conocidas de la fibra y matriz.

Propiedades mecánicas en laminados: estimación de las constantes elásticas en el plano medio. Diseño mecánico de laminados.

Actividades vinculadas:

Actividades en grupo.

Dedicación: 36h Grupo grande/Teoría: 6h Actividades dirigidas: 6h

Aprendizaje autónomo: 24h

Tema 9. Análisis de fallos en laminados.

Descripción:

Modelos de fallos.

El modelo de "Ply discount".

Predicción de vida útil de laminados.

Dedicación: 13h 30m Grupo grande/Teoría: 1h 30m Actividades dirigidas: 3h Aprendizaje autónomo: 9h

Materiales compuestos de matriz inorgánica

Descripción:

Definición. Tipo de composites de matriz metálica y cerámica, y características microestructurales. Procesos de fabricación. Concepto de transferencia de carga. Fuerza de unión interfacial. Micromecánica, propiedades térmicas y físicas de los compuestos. Caso de estudio: materiales duros y superduros - carburos cementados, compuestos de diamantes y nitruros de boro cúbico policristalinos.

Objetivos específicos:

Familiarizarse con los compuestos de matriz inorgánica (metal y cerámica) en aplicaciones estructurales y funcionales. Relaciones fundamentales entre estructura y propiedades que permitan comprender las propiedades mecánicas, térmicas y aquellas relacionadas con aplicaciones de energía. Casos de estudio de diseño y rendimiento de compuestos de matriz cerámica.

Actividades vinculadas:

Práctica de laboratorio

Dedicación: 26h 10m Grupo grande/Teoría: 9h

Grupo pequeño/Laboratorio: 1h 30m Actividades dirigidas: 1h 30m Aprendizaje autónomo: 14h 10m

SISTEMA DE CALIFICACIÓN

Fecha: 09/07/2024 **Página:** 4 / 5

NORMAS PARA LA REALIZACIÓN DE LAS PRUEBAS.

No aplica. Si son necesarias se indicaran al inicio de curso

BIBLIOGRAFÍA

Básica:

- Friedrich, Klaus; Fakirov, Stoyko; Zhang, Zhong. Polymer composites: from nano-to-macro-scale. New York: Springer, 2005. ISBN 0387241760.
- Composite materials technology: processes and properties. Munich [etc.]: Hanser, cop. 1990. ISBN 3446156844.
- Tecnología de los composites/plásticos reforzados. Barcelona: Hanser, DL 1992. ISBN 8487454046.
- Hull, Derek. Materiales compuestos. Barcelona [etc.]: Reverté, cop. 1987. ISBN 8429148396.
- Barsoum, Michel W. Fundamentals of ceramics. New York: Taylor & Francis, cop. 2003. ISBN 9780750309028.
- Chawla, Nikhilesh; Chawla, Krishan K. Metal Matrix Composites. New York: Springer, 2006. ISBN 9786610459636.
- Wachtman, J. B.; Cannon, W.; Matthewson, M. Mechanical properties of ceramics. 2nd ed. Hoboken, NJ: John Wiley & Sons, cop. 2009. ISBN 9780471735816.

Complementaria:

- Gibson, Lorna J.; Ashby, Michael F. Cellular solids: structure and properties. 2nd ed. Cambridge: Cambridge University Press, 2001. ISBN 0521499119.
- Kinloch, A. J.; Young, R. J. Fracture behaviour of polymers. London [etc.]: Chapman & Hall, 1995. ISBN 0412540703.
- Composites science and technology [en línea]. New York, NY: Elsevier Science Pub Co, [1999?]- [Consulta: 20/05/2020]. Disponible a: https://www.sciencedirect.com/science/journal/02663538.- editor-in-chief, Vinod K. Sarin; edited by Daniele Marie, Luis Llanes. Comprehensive hard materials. Amsterdam: Elsevier, 2014. ISBN 9780080965284.

Fecha: 09/07/2024 **Página:** 5 / 5